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Abstract

Numerical analyses of remotely sensed data may valuably contribute to an understanding of the vegetation/land surface interface by

pointing out at which scales a given variable displays a high level of spatial variability. Thus, there is a need of methods aimed at classifying

many one-dimensional signals, such as airborne laser profiles, on the basis of their spatial structure. The present paper proposes a theoretical

framework ensuring a consistent combination of a multi-scale pattern characterization, based on the Haar wavelet variance (also called in

ecology Two Terms Local Variance, TTLV), with two multivariate techniques such as principal components analysis (PCA) and hierarchical

cluster analysis. We illustrate our approach by comparing and classifying 257 laser profiles, with a length of 64 measurements (448 m), that

were collected by the BRGM in French Guiana over three main landscape units with distinct geomorphological and ecological

characteristics. We calculate for each profile a scalogram that summarized the multi-scale pattern and analyze the structural variability of

profiles via a typology and a classification of one-dimensional patterns. More than 80% of the variability between spatial patterns of laser

profiles has been summarized by two PCA axes, while four classes of spatial patterns were identified by cluster analysis. Each landscape unit

was associated with one or two dominant classes of spatial patterns. These results confirmed the ability of the method to extract landscape

scaling properties from complex and large sets of remotely sensed data.
D 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction surface interface by pointing out at which scales a given
Concepts of spatial pattern and scale play a central role in

the study of both ecological and land surface processes

(Levin, 1992; Scheidegger, 1991). The uneven distribution

through space of resource, material and biomass is, indeed,

both a determinant and a result of dynamic processes taking

place at the interface between vegetation and landforms.

Biotic as well as abiotic processes generally exert an

influence on a broad range of scales, which does not mean

that all scales are equally relevant to the study of a given

phenomenon or land system. Hence, pattern characterization

via numerical analyzes of remotely sensed data may val-

uably contribute to an understanding of the vegetation/land
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variable (e.g., total biomass) displays a high level of spatial

variability.

Several methods, using autocorrelation, fractals, vario-

grams, or wavelet variance have been proposed to inves-

tigate scales of spatial heterogeneity in remotely sensed data

(Pachepsky, Ritchie, & Gimenez, 1997; Parker, Lefsky, &

Harding, 2001; Rango et al., 2000). All these methods

characterize a pattern observed in a particular sampling unit,

for instance along a given laser transect or within a portion

of a satellite scene, by studying the relationship between

variance and scale (Dale, 1999; Dale et al., 2002; Ver_Hoef,

Cressie, & Glenn-Lewin, 1993). What has been largely

missing, until now, is a general approach enabling multi-

scale comparisons between a large number of spatial pat-

terns, i.e., between many sampling units in which patterns

are observed and quantified via one of the above methods. A

reciprocal question would be how to assess the relative
ed.
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importance of scales on the basis of a large set of sampling

units.

This is the very scope of the present paper which

proposes a theoretical framework for a systematic compar-

ison of spatial patterns observed in one-dimensional sam-

pling units (i.e., transects). By revisiting an established

method for pattern quantification, namely the Haar wavelet

variance (Bradshaw & Spies, 1992; Burrus, Gopinath, &

Guo, 1998; Dale & Mah, 1998)—also known in ecological

sciences as Two-Terms-Local-Variance (Hill, 1973)—we

propose a multivariate approach allowing to consistently

compare and classify one-dimensional spatial patterns on a

multi-scale basis. We shall also consider an application of

this approach to airborne laser profiles obtained for a

tropical forested landscape in French Guiana. The objective

of that application is to compare patterns of laser altimeter

profiles with the geomorphological and ecological context

to determine whether pattern analysis of laser data could be

a useful means for quantifying scaling properties of tropical

forested landscapes.
2. Methods

2.1. Quantifying patterns via the Haar wavelet variance

Wavelet transforms are becoming increasingly popular

for signal analysis, denoising and compressing (Burrus et

al., 1998). One way to produce a wavelet transform, W(b,

xi), from one-dimensional y=[ yi]1V iV n, is to compare the

data sequence with a particular template or wavelet func-

tion, w(t), centered at successive locations xi, and expressing

the scale, b, of the analysis (Bradshaw & Spies, 1992; Dale

& Mah, 1998):

W ðb; xiÞ ¼
1ffiffiffi
b

p
Xn
j¼1

yjw
xj � xi

b

� �
:

This formulation corresponds to a continuous wavelet

transform (Misiti, Misiti, Oppenheim, & Poggi, 1993),

for which the analyzing template is shifted smoothly

over the full signal. Wavelet transforms generate results

in terms of scale and position, i.e., a two-dimensional array

from a one-dimensional transect. To facilitate comparisons

between transects, the more synthetic wavelet variance

function, V(b), can be computed by averaging all squared

values W(b, xi)
2 obtained at a particular scale b. In so

doing, emphasis is put on scales while analytical informa-

tion related to position is dropped to enable a systematic

comparison of spatial patterns observed in many sampling

units.

In ecological sciences, wavelet variances have long been

used to analyze single transects under the name of Two

Terms Local Variance or TTLV (Hill, 1973). However, Dale

& Mah (1998) recognized that the TTLV can be seen as a
variance function of the oldest and simplest wavelet tem-

plate, which was due to Haar (1910). With this template we

have:

wðtÞ ¼ 1 if 0Vt < 1
2

� �
wðtÞ ¼ �1 if 1

2
Vt < 1

� �
wðtÞ ¼ 0 otherwise

8>>>><
>>>>:

Thus, using the Haar wavelet at a particular scale b is

equivalent to computing the difference between successive

blocks of b values observed along the transect. The wavelet

variance is then computed from the average of the squared

difference between blocks, which can be written for a finite

data sequence, y=[ yi]1V iV n of n values, as:

V ðbÞ ¼ averageðW ðb; xiÞ2Þ ¼
1

KðbÞ

�
Xnþ1�2b

i¼1

Xiþb�1

j¼i

ðyj � yjþbÞ
" #2

where K(b) is a scaling coefficient. Its choice may depend

on the objective of the analysis. Our aim being to achieve a

multi-scale comparison of spatial patterns, there is a need of

a standardization of V(b) values, which would allow con-

sistent comparisons of pattern intensity for different values

of b. Indeed, large scales features (e.g., landforms) are likely

to have a higher variance than the features at smaller scales

(e.g., emanating from forest canopy), thereby determining

most of the results of a multi-scale pattern comparison if a

priori standardization is omitted.

2.2. Using matrix formulation to standardize V(b) values

V(b) is a quadratic form and, as such, can be written as:

V(b)=(ytAby)/(K(b)) where y stands for the vector of obser-

vations and where Ab denotes the square matrix (or metric)

defining the quadratic form at scale b. This matrix is easily

computable on the basis of the relationships linking obser-

vational units and blocks. Let P be the matrix expressing the

affectation of the n observational units to the Nb = n + 1� b

blocks defined at scale b. P(l, m) is one if unit l belongs to

block m and zero otherwise. Let M stand for the Nb�Nb

matrix expressing the neighbourhood relationship between

blocks. Only adjacent blocks that do not overlap are

considered as neighbours, for instance blocks [xi, xi + b� 1]

1] and [xi + b, xi + 2b� 1]. M(l, m) is one if blocks l and m

are neighbours and zero otherwise. Finally, let N be the

diagonal matrix, with N(m, m) being the number of neigh-

bours of block m and with N(l, m) = 0 for l p m. Matrix Ab

can be rewritten as Ab=P
t (N�M)P (Lebart, 1969; see

Appendix A for an example).



Fig. 1. Example of reference patterns, used for standardization, for a

transect length of n= 64 and scales b={1, 2, 4, 8, 16, 24}. Each of these

patterns is deduced from the first eigenvector of the corresponding matrix

Ab.
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Note that the sum of all diagonal terms of Ab, i.e.,

trace(Ab) is 2b(n + 1� 2b), a value which has been pro-

posed by Hill (1973) for standardizing the TTLV. Indeed,

taking K(b) = trace(Ab) (Euclidean standardization) allows

to consider V(b) as an estimate of variance at scale b.

However, dividing by trace(Ab) does not ensure that V(b)

values are comparable at different scales. Furthermore,

matrices Ab are not diagonal matrices due to the use of

overlapping blocks.

This problem can be solved using what has been defined

by Chatelin (1988) as a ‘‘spectral standardization’’, which

relies on a singular value decomposition (SVD) of Ab. (All

matrices Ab are semi-definite positive matrices and can be

decomposed by SVD.) With this approach, the spatial

pattern defined by the first eigenvector of Ab is taken as

reference for pattern analysis at scale b, and the associated

eigenvalue, k1(b), is used as reference variance for stand-

ardization, i.e., K(b) = k1(b). For instance, considering a

transect length of n = 64 and scales of b={1, 2, 4, 8, 16,

24} yields the reference spatial patterns displayed in Fig. 1.

Using these eigenvectors as references means that, for a

given transect, pattern intensity at a particular scale b, will

be equal to 1 if and only if the transect values, y1V iV n, are

proportional to the reference pattern. Thus, comparing

transects on the basis of their underlying multi-scale struc-

ture, as well as assessing the relative importance of scales on

the basis of a large set of transects can be both conceived in

a consistent way.

2.3. Pattern ordination and classification

Let us consider the p� q table Z, for which each of the p

rows represent the V(b) values of a given transect (the latter

are called ‘‘scalogram’’ sensu Strang & Nguyen, 1996), and

each of the q columns contain the scalogram values related

to a given scale ba{1, 2, 3,. . .,(n/2)}. Thus, in this table, the
transects correspond to statistical units, while scales (i.e.,

sizes of blocks) are quantitative variables characterizing the

transects in terms of spatial patterns. Note that Couteron

(2002) used an analogous table for texture-based compar-

isons of air photographs, with the difference that Fourier

spectra were used instead of Haar scalograms. Fourier

spectra do not require any standardization prior to compar-

ison, since reference functions (sine and cosine) are orthog-

onal, but Fourier decomposition is reputed to be less robust

to non-stationarity than its wavelet analogues (Burrus et al.,

1998).

We submit the ( p� q) table Z to a Principal Components

Analysis (PCA) on correlation matrix (Manly, 1994) that

looks for a limited number of synthetic new variables

accounting for a substantial share of the variability between

scalograms. These new variables are linear combinations of

initial variables and are called principal components. As

scalograms have been preliminarily standardized by the

‘‘spectral’’ norm, each of the scale variables has the same

weight in the analysis. PCA results have been displayed
using a particular graphical method called biplot (Gabriel,

1981).

As a complement to PCA ordination, a hierarchical

cluster analysis has been carried out to classify scalograms.

The analysis used the Euclidean distance between two

scalograms i and j, d2ij ¼
Xq

k¼1
zik � zjk
� �2

, which is con-

sistent with PCA, and the Ward’s minimum variance crite-

rion that yields compact spherical clusters (Gordon, 1981).

All computations involved in the preparation of this

paper were carried out using R (Ihaka & Gentleman,

1996), ADE-4 (Thioulouse, Chessel, Dolédec, & Olivier,
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1997) and ArcViewR as softwares, with both pre-pro-

grammed and personal routines.
3. Application to laser data

To illustrate the method, we used airborne laser altimetry

data extracted from a very large data set of ca. 105 km of

cumulated laser profiles, that were recorded in 1996

throughout French Guiana by the BRGM (Delor, Perrin,

Truffert, Asfirane, & Rossi, 1998).

3.1. Study site

We have restricted ourselves to a study site of 15,000 ha

located at about 143 km towards the northwest of the main-

town Cayenne, between 5j28V and 5j38VNorth latitude and
� 53j17 and � 53j28VWest longitude (Fig. 2). It is situated

in an unlogged rain forest called Counami forest. Climate is

wet tropical with annual rainfall ranging between 2750 and

3000 mm and scattered over 9 months (Blancaneaux, 2001).
Fig. 2. Maps of general situation and sampling design of the Counami study site.

position of their midpoint). (c) Example of a unitary laser profile. (d) Maps of the t

apparent via an excerpt of a radar image, while the rest of the map is left blank.
Within the Counami site, experienced geomorphologists

have identified three main landscape units (Fig. 2) that differ

in altitude and morphological complexity (Hutter, 2001).

The first unit, i.e., ‘‘alluvial plains’’ (A), is characterized by

a very simple and flat relief, and encompasses the valleys of

the three main rivers (Counamama, Counami and Iracoubo)

flowing through the study site. The second unit (B) stands

for complex relief forms, having maximal altitudes below

60 m above sea level, and corresponding to tabular land-

forms that gently slopes toward talwegs. The last unit (C) is

characterized by an altitude generally exceeding 60 m above

see level, associated with complex landforms that present

steep slopes with small round-off summits.

3.2. Laser data

An airborne laser altimeter was used to measure the

distance from airplane to landscape surface. The profiling

laser altimeter was a pulsed gallium–arsenide diode laser

operating at a frequency of 195 Hz and a wavelength of 905

nm. The field of view of the laser was 5 rad giving a
(a) General situation. (b) Location of sampled transects (represented by the

hree landscape units (A, B, C): for each unit, the texture of the relief is made
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‘‘footprint’’ on the ground equal to 12 cm for the nominal

altitude used during these flights. The timing mechanism in

the laser receiver enabled a vertical resolution of 10 cm for a

single measurement. The altitude of the airplane was

approximately 120 m above the forest canopy with a

nominal ground speed of 260 km/h. Data were pre-pro-

cessed during recording by combining the number of shots

so that a laser measurement occurs at intervals of 7 m along

the flight line (Fig. 2). The geo-location of laser footprint

was established with a spatial resolution of 2–3 m using a

combination of ancillary data recorded simultaneously to

laser measurements (video frames and GPS data). Land-

scape surface elevation was finally calculated for each

measurement by using ground elevations along a flight line

(GPS data) to convert the relative data into absolute ele-

vations. Each measurement relates to the first obstacle

encountered by the laser, and may correspond to vegetation

items (leaf, branch) or to the forest floor itself.

Flight lines were oriented 30 jN and separated by 500 m.

We extracted a set of p = 556 transects with a length of
Fig. 3. Ordination and classification of the 257 scalograms. (a) Histogram of ei

analysis (PCA) of the scalograms table Y. The biplot technique allows a simulta

(block sizes, represented by grey labels). The identifying number of some transec

are linking transects to the gravity center of the cluster to which they belong (clu

deviations.
n = 64 points of measurements (448 m) from the 30 flight

lines that intersected the study site. Each transect was

represented in the geographical space by a point correspond-

ing to its middle (Fig. 2). We eliminated transects that

intersected several geomorphological types and kept only

p = 257 homogeneous transects. We computed the scalo-

gram for each of these 257 transects, using the following set

of block sizes ba{1, 2, 4, 6, 8, 12, 16, 24}. Then the

scalograms were compared and classified to provide a

typology of transects based on their spatial pattern.

3.3. Results

The two main PCA axes accounted for 81% of the

variability between scalograms, with 48% and 33% for the

first and the second axes, respectively (Fig. 3a). The first axis

displayed a high negative correlation with small block sizes

and a high positive correlation with large block sizes (Fig.

3b). The second axis was negatively correlated with inter-

mediate block sizes. In terms of transect scores (Fig. 3b), it
genvalues. (b) Biplot based on axes 1 and 2 of the principal components

neous plotting of individuals (transects, denoted by points) and variables

ts, evoked in the text, is mentioned on the plot (white labels). Straight lines

sters are labelled from 1 to 4). Ellipses are based on the clusters’ standard



Fig. 4. Dendrogram yielded by the hierarchical cluster analysis of the

scalograms table Y.

Fig. 5. Average scalograms and typical laser profiles for clusters (a) and landscape u

distance to the average scalogram is displayed for each cluster and each landscap
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was particularly difficult to define clusters of transects by

visual delineation. However, the hierarchical cluster analysis

yielded a dendrogram containing four well-defined clusters

(Fig. 4).

Centers of gravity of the clusters identified through the

previous dendrogram are represented on the biplot in Fig. 3b.

For each cluster, the average scalogram is displayed in Fig. 5a

along with the laser profile having the smallest Euclidian

distance to the average scalogram of the cluster. Cluster 1 was

typical of fine-grained patterns, with scalograms that were

exclusively skewed towards small scales. Laser profiles

belonging to that cluster displayed a substantial variability,

that was mainly observable along axis 2 in Fig. 3b, with a

gradation of small scales from b = 1, 2 (transect 551, 379) to

b = 4 (transect 360) and 6 (transect 189), i.e., from structures

of size 7–42 m. As opposed to that cluster, the second one

(cluster 2) was characterized by patterns which mainly

presented large-scale variation between 100 (b = 16; transects

152, 346) and 200 m (b = 24; transects 181, 297). Scale
nits (b). The raw laser profile of the transect showing the smallest Euclidean

e unit.



Fig. 6. Spatial relationship between clusters and landscape units. Transects belonging to the focal cluster are represented by their midpoint.

Table 1

Contingency table expressing the cross-classification of the 257 transects

into the three landscape units and the four clusters of patterns (row percent)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

(A) Alluvial plain

(altitude < 20 m)

55 10 14 21 108

(B) Relief with

complex forms

(altitude < 60 m)

23 16 31 30 105

(C) Relief with

complex forms

(60 m>altitude)

9 52 23 16 44

Total 88 51 58 60 257
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variability within this cluster was mainly apparent along axis

2. Cluster 3 gathered patterns characterized by the importance

of both small and large scales (i.e., < 40 and >100 m,

respectively). It was typically a class of multi-scale patterns.

Intensity attached to small scales was quite lower for this

cluster than for cluster 1. Cluster 4 featured all the patterns

characterized by the dominance of intermediate scales, rang-

ing from about 40 to 100 m.

Laser transects belonging to the same cluster were not

evenly distributed throughout the study area (Fig. 6). In

particular, transects belonging to clusters 1 and 2 appeared

clearly aggregated. This means that neighbouring transects

displayed similar spatial patterns of laser response. The local

heterogeneity of landscape surface roughness was thus quite

limited. Moreover, laser patterns were related to landscape

units, since the contingency table based on the cross-

classification of the three landscape units and the four

clusters of patterns (Table 1) departed significantly from

the null hypothesis of independence (v2 test, P= 2e� 12).

Indeed, each landscape unit had most of its transects

belonging to a particular cluster. Patterns defining cluster

1 were generally found in the alluvial plain (landscape unit

A), while patterns making clusters 3 and 4 characterized the

landscape unit B, and patterns of cluster 2 mostly belonged
to landscape unit C. The differences between landscape

units were thus explained simultaneously by large and small

scales patterns. Large scale differences were not surprising

since they reflected large scale topographical fluctuations

that characterized the landscape units B and C. The scale

gradient observed from the laser profiles, that stretched from

the alluvial plain to the complex landforms was also con-

sistent with the visual aspect of the radar scenes (see Fig.

2c). Results at smaller scales (large intensity for the alluvial

plain, lower intensity for the complex forms) were less

expected, but may be interpreted as differences in forest
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cover: small-scaled structures may correspond to convex

units of canopy surface topography formed by the crown of

emergent trees, isolated or juxtaposed with a minimal inter-

crown space (Birnbaum, 2001; Pitman, Terborgh, Silman, &

Nuñez, 1999). Other forms of forest organization can result

in large-scale variations due to the presence of canopy gaps

(Bradshaw & Spies, 1992; Birnbaum, 2001). These forms of

canopy organization are liable to vary in relation to topo-

graphical and geological factors. Moreover, distinct floristic

compositions were found for parts of the Counami forest

corresponding roughly to the three landscape units (Cou-

teron, Pélissier, Mapaga, Molino, & Teillier, 2002). Here,

the correspondence between landscape units and clusters

remained fuzzier, because the variability of laser profiles

within landscape units was large (Table 1). For example, in

the alluvial plain, in spite of a clear dominance of fine-

grained patterns (cluster 1), large gaps in the forest cover

may occasionally determine the presence of laser profiles

belonging to the other clusters.
4. Discussion

Using laser data, we have illustrated a new method for

classifying one-dimensional patterns. In spite of a coarse

resolution of the laser signal, results regarding geomor-

phology and to some extent forest canopy structure are

interesting and nontrivial since they were related to an

independent mapping of landforms. This is in agreement

with results of several studies that have demonstrated the

usefulness of various kinds of laser data to characterize

vegetation cover and landforms (Drake & Weishampel,

2000; Pachepsky & Ritchie, 1998; Pachepsky et al.,

1997; Weishampel, Blair, Knox, Dubayah, & Clark,

2000), and to investigate scaling properties of landscapes.

Indeed as for other studies, we have found spatial patterns

expressing themselves at several distinct scales. Of course,

the characteristic of the laser information that was used did

not allow a clear distinction of landform vs. canopy cover

structure at intermediate scales but other kinds of laser

techniques can allow such a distinction thanks to a higher

spatial resolution, or to new sensors like the LVIS gen-

eration (Blair, Rabine, & Hofton, 1999), that yield separate

signals for canopy cover and forest floor. Corresponding

data sets will, nevertheless, represent a large amount of

information that will increase the need of methods allow-

ing consistent comparison and classification of spatial

patterns. Thus, whatever the limitation of the data set we

used for illustration, the present study demonstrated the

efficiency of our new method to summarize and classify a

large number of laser profiles.

Indeed, the method was able to summarize a rich set of

data into a limited number of ordination axes that are linear

combinations of spatial scales. More than 80% of the

variability between scalograms, and thus between spatial

patterns, was accounted for by the two main PCA axes. As
laser data contain pertinent information on landscape scaling

properties, both the main axes of the PCA and the cluster

dendrogram constitute valuable tools to explore, summarize

and monitor landforms and/or vegetation covers. This kind

of analysis is actually multi-scale at least for the range of

scales that can be considered via a sampling window having

a particular length (here 448 m).

Our approach is not restricted to a particular method of

spatial pattern quantification, since pattern classification may

stem from any method that produce an expression of variance

with respect to scale. Indeed, the variance at a particular scale,

b, can always be represented as a quadratic form (xtAbx) of a

data vector x. Consequently, the analysis of matrices Ab, via

singular value decomposition, provides explicit representa-

tions of the reference spatial patterns that a given method

consider at a given scale (Fig. 1). This opens the way to a

standardization of variance vs. scale functions (scalograms).

In spite of this unifying principle, the extent to which the

choice of a particular method of pattern quantification (via a

family of matrices Ab) may have some influence on the final

result of the pattern classification is still an open question. For

the present paper, we used the Haar wavelet variance (also

known as Two Terms Local Variance) which is closely related

to the variogram (Ver_Hoef et al., 1993). The use of other

simple wavelet templates (e.g., the ‘French Top Hat’; Dale &

Mah 1998) is also thinkable. Another alternative is Fourier

decomposition, which has been already used for classifying

spatial patterns that display a strong periodic component

(Couteron, 2002). Since our analysis only deals with scales

and not with positions, the advantage of wavelets over Four-

ier decomposition may, in fact, be questioned. From a

theoretical standpoint, it is well known that Fourier analysis

is very good at detecting genuine periodicity, though non-

stationarity may have some blurring effects. Taking short

portions of the signal, as our ‘transects’ of 64 observations,

may limit non-stationarity, but is also detrimental to the

resolution of the Fourier spectrum (Kumaresan, 1993).

Hence, even if only scales are dealt with, using wavelet

alternatives to Fourier decomposition retain a substantial

appeal if one has no a priori reason to suspect the presence

of periodic features in the data. From a practical standpoint,

however, the sensibility of a pattern classification to the

Fourier vs. Haar wavelet choice is a question, which is still

largely to be explored from both real-world and computer-

generated data. This is, anyway, beyond the scope of the

present paper, which intend mainly to underline that, thanks

to spectral standardization, consistent multi-scale compari-

sons of one-dimensional patterns are possible from various

families of scale vs. variance functions.
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Appendix A

The goal of this appendix is to illustrate on an example

how the wavelet variance function at scale b, V ðbÞ ¼ 1
KðbÞ �Pnþ1�2b

i¼1

�Piþb�1
j¼i ðyj � yjþbÞ

�2
, can be rewritten under a

quadratic form V(b)=(ytAby)/(K(b) where Ab =P
t(N�M)P.

Let us consider a transect yt=( y1, y2, y3, y4, y5, y6) of

length n = 6, and a block size b = 2.

There are N2 = n + 1� b = 5 blocks of length 2 in the

transect: [( y1, y2); ( y2, y3); ( y3, y4); ( y4, y5); ( y5, y6)]. This

information is summarized in the matrix

PðN2;nÞ ¼

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

The neighbourhood relationships between blocks is

expressed by the matrix

MðNb;NbÞ ¼

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

and the number of neighbours of each blocks is represented

on the diagonal of the matrix

NðNb;NbÞ ¼

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

The Haar wavelet variance at scale, b = 2, is

V ð2Þ¼
y1 þ y2 � y3 � y4ð Þ2þ y2 þ y3 � y4 � y5ð Þ2þ y3 þ y4 � y5 � y6ð Þ2

h i
KðbÞ

¼

y1 þ y2

y2 þ y3

y3 þ y4

y4 þ y5

y5 þ y6

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

t
1 0 �1 0 0

0 1 0 �1 0

�1 0 2 0 �1

0 �1 0 1 0

0 0 �1 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

y1 þ y2

y2 þ y3

y3 þ y4

y4 þ y5

y5 þ y6

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

KðbÞ ;

i.e.,

V ð2Þ ¼ =

ytAby

KðbÞ with Ab¼ PtðN � MÞP:=

ytðPtðN � MÞPÞy
KðbÞ

ðPyÞtðN � MÞ Pyð Þ
KðbÞ
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