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Abstract

Several papers have recently raised the occurrence of some problems with between-group Principal Component Analysis
(bgPCA). This method inflates the differences between the groups, and can even display completely artificial differences
when none exist, for example when applied to random numbers tables with many variables (columns) and few individuals
(rows). Lately, cross-validation has been proposed as a way to circumvent this problem. Here we present some tools and
several functions of the ade4 package for the R statistical software to compute a bgPCA, test the presence of statistically
significant groups, perform a cross-validation of this analysis and compute associated statistics. We also describe how to use
these functions to avoid running into the spurious groups problem. Several examples, including a real data set and random
numbers tables, are used to validate this approach in various experimental and numerical conditions. The integrated frame-
work of the duality diagram, as implemented in ade4, allows to extend this approach to other multivariate analysis methods
beyond principal component analysis, which could prove useful in the case of other types of variables. The R code and the
real data table used to make the computations and graphs of this paper are available as supplementary material.

Keywords Geometric morphometrics - Multivariate analysis - Ade4 - Between-group analysis - Spurious groups - Random
permutation test - Leave-one-out cross-validation

Introduction

In many fields, multivariate data are measured on individu-
als (samples, specimens, populations, etc.) belonging to dif-
ferent groups. Researchers aim to check wether differences
exist between the groups and which variables mainly drive
them. Canonical Variate Analysis (CVA or DA, Discrimi-
nant Analysis) was extensively used, in the context of geo-
metric morphometrics (e.g., Debat et al., 2003; Leinonen
et al., 2006; Valenzuela-Lamas et al., 2011), to evidence dif-
ferentiation among groups of individuals using multivariate
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data. However, a paper by Mitteroecker and Bookstein
(2011) alerted the community of geometric morphometrics
on the fact that CVA may lead to spurious results when the
number of variables exceeded the number of individuals.
The same year, Kovarovic et al. (2011) and Viscosi and Car-
dini (2011) also noted the paramount importance of carefully
choosing the predictor variables and the need to address the
“overfitting” problem by cross-validation when using CVA.
In fact, some statisticians even recommended (without dem-
onstration) that the number of individuals should be at least
equal to ten times the number of variables (Weinberg and
Darlington 1976). This is probably excessive, but the issue
is becoming more and more problematic with the raise of 3D
data in morphometrics, that could deliver hundreds and even
thousands of shape variables (e.g., Harbers et al., 2020).
Evin et al. (2013) noted that performing CVA on princi-
pal components “may help not only to maximize the cross-
validated accuracy but also to reduce the ‘noise’ in the data,
as well as the positive bias in classification accuracy when
groups have different sample sizes”. Hence, CVA remains
quite popular, but it is now regularly associated with a pro-
cedure of dimensionality reduction (Chiari & Claude 2012;
Cucchi et al., 2017; Dianat et al., 2017; Harbers et al., 2020).
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Between-Group Analysis (BGA) was first proposed,
in two papers (in French) by Dolédec and Chessel (1987;
1989), as an alternative to CVA when the number of vari-
ables exceeds the number of individuals. These papers
explained how to disentangle the variations in ecological
data tables according to the categories of a qualitative vari-
able. In 2002, Culhane et al. (2002) used the ADE-4 soft-
ware (Thioulouse et al., 1997), a former standalone version
of the ade4 package for R, to apply BGA to microarray data
sets. In the field of geometric morphometrics, the method
soon appeared, under the denomination of bgPCA (between-
group Principal Component Analysis), as an alternative to
circumvent the problems of CVA when the number of vari-
ables exceeded the number of individuals and the method
is now increasingly used (e.g., Almécija et al., 2013; Gunz
et al., 2012; Ledevin and Koyabu 2019; Souquet et al.,
2019). However, a series of papers by Cardini et al. (2019),
Bookstein (2019) and Cardini and Polly (2020) have recently
alerted morphometricians, and biologists at large, about the
fact that bgPCA, as CVA, can also exhibit spurious groups,
even when applied to randomly generated data without any
group structure.

As noted by Cardini et al. (2019), “These are important
problems for a method mainly designed for the analysis of
variation among groups when there are very large numbers
of variables and relatively small samples. In such cases,
users are likely to conclude that the groups they are com-
paring are much more distinct than they really are.” These
authors use the mean overlap index, Oi/' to measure the dis-
persion of bgPCA groups, and Cardini and Polly (2020)
showed that a permutation test of the global R (i.e., the part
of total variance that is due to differences among groups)
associated to a cross-validation of bgPCA coordinates can
help discard spurious cases. Several packages, particularly
Morpho for the R statistical software (Schlager 2017) and
the MorphoJ software (Klingenberg 2011), provide many
functions to apply (cross-validated) CVA and bgPCA to
geometric morphometric data sets and to perform associ-
ated permutation tests, particularly PERMANOVA, with
the adonis function of the vegan package for R (Oksanen
et al., 2019).

In this paper, we propose a procedure for identifying,
quantifying and overcoming the spurious groups problem in
BGA. We prefer to use the abbreviation BGA (for Between-
Group Analysis) instead of bgPCA (for between-group Prin-
cipal Component Analysis) because this procedure is not
limited to Principal Component Analysis. It can be applied
to any type of analysis available in the ade4 package and
thus deals with different types of data, not only quantita-
tive variables. This procedure involves a permutation test of
the global R? (randtest function), the use of cross-validated
coordinates (new loocv function) and we propose a new
measure of the discrepancy between the original BGA and

the cross-validated coordinates by comparing their respec-
tive mean overlap indexes. We show that this discrepancy
can be seen as a “spuriousness index”. We use real and simu-
lated data to show how these different tools can be used
to avoid misinterpretations of BGA outputs. The procedure
can be easily implemented using the functions randtest and
loocv, available in the ade4 package for R. The whole pack-
age is presented by Thioulouse et al. (2018), with one chap-
ter dedicated to BGA and DA. All the R scripts used in this
paper to draw figures and compute analyses and simulations
are available as supplementary material. They can be used to
redo and check all the graphs and computations.

Material and Methods
Statistical tools

We propose the combination of different tools to avoid
misinterpretations of BGA outputs due to the presence
of spurious groups. These tools are provided by the ade4
package for R (Thioulouse et al., 2018) that offers the same
between- and within- group analyses as other geometric
morphometric software (e.g., the Morpho package). One
advantage of ade4 implementation is its flexibility so that
BGA framework can be applied to the analysis of a table
of quantitative variables (bgPCA), qualitative variables (by
multiple correspondence analysis) or contingency tables (by
correspondence analysis) and has been extended to many
other types of more complex methods devoted to the analy-
sis of two or three tables (Franquet et al., 1995; Dray et al.,
2015). See Thioulouse et al. (2018) for more details about
these analyses.

We used several functions of the ade4 (Thioulouse et al.,
2018) and adegraphics (Siberchicot et al., 2017) packages
for R. The main functions used in the present context are
bca, for between class analysis (“class” and “group” have
the same meaning here) to compute between-group analyses,
the randtest function, to perform randomisation tests on the
percentage of between-group variance, and the loocv func-
tion to compute leave-one-out cross-validation. The s.class
function allowed to display groups on the BGA factor maps
and on the cross-validated maps. All these functions are
generic (S3 class), which means that they can be applied to
several types of analyses, and that the suitable computation
method will be automatically chosen.

Percentage of Explained Variation and Permutation
Procedure

The randtest function performs a permutation test based on a

criterion equal to the percentage of total variation explained
by between-group differences (R?). This percentage is useful
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to assess the validity of BGA results: a low value means
that group separation should be considered with caution.
A permutation procedure is associated where the rows of
the data table (individuals) are permuted and thus randomly
assigned to the groups and the R? is recomputed for each
permutation. The simulated p-value of the test is equal to the
proportion of permutations that produces an R” value higher
(or equal) than the value computed for observed data. This
test is equivalent to the PERMANOVA test of the vegan
package (adonis and adonis2 functions) used for example
by Cardini and Polly (2020) and it gives the same results.
But the randtest function is much faster (10 to 200 times
faster) for large data tables, because it is not distance-based
and does not need to compute distance matrices. Note that
this procedure is based on a permutation of original raw data
and assumes that sampling units (individuals) are exchange-
able and thus independent. When there is a risk that spatial
or phylogenetic autocorrelation occurs between individuals,
adapted procedures should be preferred such as randomiza-
tion of residuals as implemented in the RRPP package (Col-
lyer & Adams, 2018) or Moran’s Spectral Randomization
(MSR, Wagner & Dray, 2015) available in the adespatial
package. In this paper, we consider only the case of inde-
pendence between individuals but we provide R code in the
supplementary material showing how to run the testing pro-
cedure with both RRPP and adespatial when phylogenetic
dependence occurs.

Cross-Validation

The loocv function implements a leave-one-out procedure:
each row of the data table (individual) is removed, one at a
time. A BGA is computed on each of these new tables, and
the missing row is projected as additional element on this
BGA outputs. This allows to compute new coordinates for
this individual, based on the group means computed using
all other individuals. If group means are really different
(due to real differences between groups), then these new
cross-validated coordinates is very close to the coordinates
obtained in the BGA of the complete table. In this case, the
cross-validated factor map will look similar to the factor map
of the original analysis. Conversely, if group means are not
really different, with just spurious group on the BGA factor
map coming from geometrical constraints linked to the size
of vector subspaces (Rohlf 2021), then the new coordinates
will be different from the coordinates obtained in the BGA
of the complete table, and the cross-validated factor map will
not show spurious groups.

The loocv function is useful to get a visual confirmation
of the result of the permutation test. If the randtest permuta-
tion test is statistically significant, then the cross-validated
factor map should display the same groups as the original
BGA factor map. In the case where there is no real difference
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between groups (BGA spurious groups), but the p-value of
the test is anyway (just by chance) lower than the chosen
significance threshold, then the cross-validated factor map
will not show the spurious groups. This should prevent users
from drawing false conclusions based only on the p-value
of the test. The loocv outputs include several statistics that
can be used to measure the discrepancy between BGA and
the cross-validation.

The Mean Overlap Index

The mean overlap index Dij (Cardini et al., 2019) is equal to
the average, for all the pairs of groups, of the proportion of
individuals in a group that are closer to the mean of the other
group. This index can be computed for the observed and also
for the cross-validated data sets. It can be computed for the
full data space, for the full BGA space (i.e., all axes) or for
only some axes (for example the two axes used to draw a
factor map). In this paper, it is always computed in the full
BGA space.

When the groups are very different, their means are very
far apart and the groups do not overlap, so Oij will be equal
to 0. Conversely, when there is no group structure, they will
completely overlap, and Oij will be near to 0.5 because in
this case any individual is equally likely to be closest to any
other group mean. This overlap index can be computed for
both the BGA (bga0;)) and for the cross-validation (xvalO;).

In the presence of spurious groups, the BGA mean over-
lap decreases (compared to a BGA with no spurious group
effect) and bgaO;; will be lower than xvalOj;. So the differ-
ence (xvalO; — bgaO;;) can be used as an index of spurious-
ness. This difference varies between O (for xvalO,_»i =05
and bgaO; = 0.5, i.e. no spurious group effect) and 0.5
(for xvalOl-j = 0.5 and bgaO,-j = 0, i.e. maximum possible
effect). It can therefore be expressed as a percentage of the
maximum possible spurious group effect:

A0, = (xvalO; — bga0,)/0.5 * 100

These statistics are computed by the loocv function.

Simulation Study

We design a simulation study to evaluate how the combined
use of the procedures described above can help to avoid mis-
interpretations of BGA outputs. We firstly generate tables
of random numbers using the rnorm function of R (R Core
Team, 2020) to simulate data where no real groups exist but
spurious groups can appear when increasing the number of
variables relative to the number of individuals. A real data
set on the house mouse was also analyzed and we added ran-
dom variables to evaluate how the different statistical tools
perform when real groups exist but the structure is degraded
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by random noise. In this second simulation, we considered
random variables without correlation structure (rnorm) or
with a correlation structure fixed to the one computed on
real house mouse data (using the mvrnorm function of the
MASS package).

Simulation with No Group Difference

We generated random numbers drawn from a normal distri-
bution with mean equal to 0 and standard deviation equal to
1 using rnorm function. These numbers were then arranged
in tables with varying numbers of individuals () and vari-
ables (N,). Arbitrary (random) groups of rows were defined
in these tables, so these groups corresponded to no real
structure. The number of groups (V,) varies in the different
simulations.

In this simulation, we evaluated the performance of the R2
permutation test when no differences exist between groups.
We also checked how the statistics computed by the loocv
function (Oij and AOij) changes when varying the total num-
ber of individuals and variables.

Simulation with Group Differences

We used a real morphometric data set describing popula-
tions of the Western European house mouse (Mus muscu-
lus domesticus). This subspecies has been shown to display
geographic differentiation in its dental morphology, between
continental populations (Renaud et al., 2017b) but especially
regarding insular populations (Renaud et al., 2011, 2015,
2018). The sampling therefore included mice from the fol-
lowing locations: (1) the neighboring localities of Montpel-
lier (N = 13) and Frontignan (N = 30), in South-Eastern
France along the Mediterranean coast; (2) the locality of
Gardouch (N = 68) near Toulouse, in South Western France;
(3) mice from Lombardy, Northern Italy (N = 40); (5) popu-
lations from various areas in Corsica (Fango, Bonifacio and
Bavella, for a total of N = 63) in order to document insu-
lar differentiation. All mice were trapped in a commensal
context, except those of Frontignan that are characterized
by their feral way of life (Renaud et al., 2017b). Details
regarding the sampling can be found in previous publica-
tions (Renaud et al., 2011, 2015, 2018).

The character used here to quantify this geographic dif-
ferentiation is the shape of the occlusal surface of the first
upper molar (UM1). It was described using 64 points sam-
pled at equal curvilinear distance along the outline, the first
point being located at the anterior-most part of the tooth.
The points along the outline were analyzed as sliding semi-
landmarks (Bookstein, 1991, 1997; Cucchi et al., 2013).
Using this approach, the outline points are adjusted using a
generalized Procrustes superimposition (GPA) standardizing
size, position and orientation, while retaining the geometric

relationships between specimens (Rohlf and Slice, 1990).
During the superimposition, semi-landmarks were allowed
sliding along their tangent vectors until their positions mini-
mize the shape difference between specimens, the criterion
being bending energy (Bookstein 1997). Because the first
point was only defined on the basis of a maximum of curva-
ture at the anterior-most part of the UM1, some slight off-
set might occur between specimens, introducing noise into
the data set. The first point was therefore considered as a
semi-landmark allowed to slide between the last and second
points. Each molar tooth was therefore described by a set of
128 aligned coordinates. The GPA was performed using the
R package geomorph (Adams & Otarola-Castillo, 2013).

The data table is available as supplementary material. As
it contains the measurements of 128 variables for 214 indi-
viduals, we assume that the numerical conditions ensure that
there is no risk of spurious groups in the analysis of this data
table. We expect that BGA applied on this data set allows to
identify true differences between the groups. We mimic the
effect of spurious groups by adding to the house mouse data
several sets of 128 columns of random numbers. These sets
of 128 columns were generated in two ways:

— Numbers drawn from univariate normal distributions
with means and standard deviations equal to the means
and standard deviations of the 128 variables of the house
mouse data set, with no covariance structure.

— Numbers drawn from a multivariate normal distribution
with means and standard deviations equal to the means
and standard deviations of the variables of the house
mouse data set and with the same covariance matrix.

These simulations allowed us to check the influence of the
number of variables and of the spurious group effect when
slight real biological differences exist between groups in the
data set. We evaluated the performance of the R? permuta-
tion test to identify these differences, showed how factorial
maps are affected by introducing random variables and eval-
uated if the cross-validation provide better representation of
individuals in factorial maps.

Results
Simulation with No Group Difference

Figure 1 shows the factor map of the BGA (Fig. 1A) and
of the cross-validation (Fig. 1B) of a table of 360 random
normal variables simulated for 50 individuals belonging to
five groups (10 individuals per group). On the left (Fig. 1A),
the BGA factor map shows spurious groups, and on the right
(Fig. 1B), the cross-validated factor map computed with the
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d=5

.

Spurious groups: randtest p-value = 0.435
Explained variance ratio = 8% Overlap index Ojj = 0

Cross-validation: Overlap index Ojj = 0.35 - AOjj = 70%

Fig.1 Factor map of the BGA of a random numbers table (five
groups, 10 individuals by group, 360 variables). The five groups are
represented by convex hulls surrounding the 10 individuals of each
group. A: Factor map showing the spurious groups. The p-value
of the randtest permutation test is equal to 0.435 and the ratio of
between-groups to total variance is equal to 8%. The mean overlap
index bga@l_./- is equal to O (the five groups are completely apart). B:

loocv function shows that the spurious groups effect has
been removed.

Note that the p-value of the randtest permutation test of
this BGA was equal to 0.435. This means that the test was
not tricked by the spurious groups appearing on the BGA
factor map. This permutation test is performed in the full
data space and it is not influenced by the group separation
observed on Fig. 1A. This separation of the five groups
occurs only in the BGA vector space. So when a BGA leads
to a non significant permutation test, all the other results
should be discarded and the factor maps should not even
be drawn.

However, as for any statistical test, there is always a small
probability to get low p-values when doing many tests, even
on a table of random numbers. In any case, on 100 tests, it
is expected that five will have a p-value less than 0.05, even
if the null hypothesis H,, (no difference between groups) is
true. This corresponds to Type I error and is not related to
the spurious groups problem, but both can happen simulta-
neously (see Supplementary Figure 1). In such situations,
incautious users could conclude that the five spurious groups
visible on Fig. 1A correspond to a real structure of the data
set. Several ways exist to avoid this problem

The first and most usual way is to use a lower signifi-
cance threshold for the p-value of the test. This is particu-
larly appropriate here because the spurious groups problem
appears mostly for large data sets with hundreds or thou-
sands of variables. In this case, even tiny effects can be evi-
denced and may provide low p-values. Type II error rate
will be inflated, but the large size of these data sets should
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Cross-validated factor map computed with the loocv function, show-
ing that the spurious group effect have been removed. The mean over-
lap index xval(_)l-j is equal to 0.35, reflecting the large overlap of the
five groups. The index of spuriousness 40;; is equal to 70% and the
comparison of Fig. 1A and B confirms the fact that BGA groups on
Fig. 1A are not supported by cross-validation

allow to compensate for this problem. Choosing a signifi-
cance threshold equal to 0.01, 0.005 or even 0.001 instead of
0.05 is therefore a good way to prevent misinterpretations.

Another way to prevent over-optimistic conclusions is to
look at the percentage of between-group variance. Here, it
is equal to only 8%, and interpretations based on such a
low percentage of explained variance should be considered
with caution, particularly if the test is not statistically highly
significant.

A third way is to use the cross-validation procedure and
compare the BGA factor map and the cross-validated factor
map. The large difference between Fig. 1A and B would
allow to exclude any erroneous conclusion. The index of
spuriousness AO,-j measures the discrepancy between the
BGA and the cross-validation. The high value observed
here (70%) means that the separation of groups on Fig. 1A
is probably spurious. The theoretical maximum of 100%
would be obtained only for groups completely separated in
the BGA space and completely superimposed in the cross-
validation space.

Evaluation of the R2 Permutation Test

In order to test the validity of the randtest permutation test
in different situations, we varied the number of groups in
the simulated data tables (Ng =2,3,5, 10 and 30 groups),
while keeping the total number of individuals (N;) constant
and equal to 300 (i.e., respectively 150, 100, 60, 20 and 10
individuals per group). The number of variables (N,) was
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equal to 100, 300, 600, 1200, 1800, 2400 and 4800. Results
are summed up in Tables 1, 2 and 3.

These three tables show that the randtest permutation test
always performed as expected: the proportion of tests for
which the p-value was lower than a given threshold (0.05,
0.01, and 0.001) was always nearly equal to this threshold, in
all the tested situations, i.e., for all the numbers of individu-
als, groups, and variables. This was true even in the worst
situations (N;/N, ratio = 0.06), which demonstrates that this
test has a correct level of Type I error and is thus not sensi-
tive to the spurious groups problem of BGA.

Another problem that can affect permutation tests con-
cerns the minimum number of individuals that are needed to
obtain the desired number of permutations (generally 1000).

If the number of individuals is too low, then the total number
of possible permutations will be less than 1000. In this case,
the distribution of the criterion might not be approximated
satisfactorily, and the result of the test (p-value) could be
biased. The minimal number of individuals needed to have
at least 1000 distinct permutations for the randtest function
of the ade4 package is given in Table 4. These numbers are
relatively low and should not be an obstacle in usual studies.

Evaluation of the Cross-Validation Procedure
We tested the validity of the loocv cross-validation proce-

dure in several situations, by doing the BGA and cross-val-
idation of tables of random normal variables. The number

Table 1 Number of randtest N\W 5

. A 5 10 30 Tot
tests returning a p-value lower s
than 0.05 on 1000 tests, with 100 41 61 48 43 50 243
1000 permutations for each test 300 53 44 62 48 59 266
600 55 54 53 41 50 253
1200 39 59 52 41 52 243
2400 49 59 49 44 41 242
4800 49 57 56 45 52 259
Total 286 334 320 262 304 1506

Table 2 Number of randtest
tests returning a p-value lower
than 0.01 on 5000 tests, with
1000 permutations for each test

Table 3 Number of randtest
tests returning a p-value lower
than 0.001 on 10000 tests,
with 10000 permutations for
each test. Columns: number
of groups, rows: number of
variables

Columns: number of groups, rows: number of variables. The mean number of significant tests under H is

equal to 50 and the 95% interval of its theoretical distribution is [37, 64]

NN, 2 3 5 10 30 Tot
100 35 44 54 40 36 209
300 48 49 39 41 52 229
600 42 45 46 52 48 233
1200 34 42 43 46 47 212
2400 50 38 42 65 46 241
4800 56 50 41 40 48 235
Total 265 268 265 284 271 1359

Columns: number of groups, rows: number of variables. The mean number of significant tests under H,, is

equal to 50 and the 99% interval of its theoretical distribution is [33, 69]

N\N, 2 3 5 10 30 Tot
100 10 9 6 9 6 40
300 6 13 6 4 11 40
600 11 10 9 11 9 50
1200 9 15 7 7 10 48
2400 9 8 10 5 40
4800 10 8 11 9 42
Total 55 63 49 43 50 260

The mean number of significant tests under H,, is equal to 10 and the 95% interval of its theoretical distri-

bution is [4, 17]
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Table 4 Number of groups,

o N, NN, N,
number of individuals per $ $
group and total number of 2 12 24
individuals needed to have at 3 6 18
least 1000 distinct permutations
of the randtest test of the ade4 4 4 16
package 5 4 20
6 3 18
7 3 21
8 3 24

This table was obtained by a
simulation study

of groups in the simulated data tables was kept constant
and equal to five. The total number of individuals (N;)
was equal to 100, 200, 400 and 800. The number of vari-
ables (N,) was equal to 10, 20, 50, 100, 200, 350, and 500.
Results are summed up in Fig. 2, that shows the variations
of the mean overlap index for the BGA (full symbols) and
for the cross-validation (open symbols) when the number
of variables in the random numbers table increases, and
for several values of the number of individuals. The over-
lap index of BGA is directly a measure of the spurious
group effect: as groups are separating, the overlap index
decreases.

o
o "
Ni em+A BGA A
—— 100—— 400 oooA cross-validation
— 200—— 800
=
o
3 o |
E [=]
Q.
Kol
g
o
§ o
£ S
S
o
S

Number of variables

Fig.2 Values of the mean overlap index for the BGA (full sym-
bols) and for the corresponding cross-validation (empty symbols)
for increasing numbers of variables and individuals. The number of
groups is always equal to five and each point represents the mean of
100 simulations. The number of variables (x-axis) varies from 10 to
500. A: The number of individuals (%) is equal to 100 (brown curves
and circles), 200 (blue curves and squares), 400 (red curves and dia-
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Figure 2A shows that the number of variables has no
influence on the mean overlap index of cross-validation
(curves with open symbols), demonstrating that cross-
validated factorial maps are not sensitive to the spurious
group effect. The mean overlap index of cross-validation
slightly increases (from 0.31 to 0.37) as the number of indi-
viduals increases from 100 to 800. This result was expected
for random number tables, because the probability of any
individual being nearer to another group increases with the
number of individuals. The mean overlap index of the BGA
(curves with full symbols) decreases as the number of vari-
ables increases, because the groups are more and more sepa-
rated by the spurious groups effect in the BGA space. For
tables with only 100 individuals (brown curves and circles),
the mean overlap index of BGA decreases very fast when the
number of variables increases, but the decrease gets slower
as the number of individuals increases. For tables with 500
variables, the mean overlap index of BGA stays very low
even with 800 individuals (green curves and triangles).
This means that increasing the number of individuals is not
enough to overcome the spurious groups problem.

As a consequence of trends observed for the cross-val-
idation mean overlap index (xval@,.j) and the BGA mean
overlap index (bgaO;), the statistic AO;; can be used as a
spuriousness index. For 800 individuals and 200 variables

wn
2
® BGA —— p-value > 0.05 B
O cross-validation - - - p-value <0.05
p-value < 0.01
<
o
3 o |
g =]
Q
Kol
g
o
§
o
§ 51
S
=
S

0 100 200 300 400 500

Number of variables

monds) and 800 (green curves and triangles). B: Dashed and dotted
lines also correspond to the overlap index computed for tables of
random numbers (100 individuals), but these particular tables were
selected by an iterative procedure to give significant (p-value < 0.05,
dashed blue lines) and very significant (p-value < 0.01, dotted red
lines) permutation tests of the difference between groups
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it is equal to 39% of the maximum theoretical possible spu-
rious group effect, and for 500 variables it is equal to 57%.
Hence, the values of the spuriousness index also depend on
the number of individuals and variables. For example, Fig. 1
shows that it can reach 70% for N;/N, = 50/360 .

Lastly, it is important to note that all trends reported
above are also observed if the R? permutation test returns
significant results (type I error, dotted and dashed lines on
Fig. 2B). This shows that spurious groups can be detected
by a high value of AO” even when the permutation test is
highly significant.

Simulation with Group Differences

When the number of variables is high and the groups are
only slightly different it may be difficult to disentangle
the spurious group effect from the small true differences
between the groups. This situation was simulated by gradu-
ally adding several sets of columns of random numbers to
the house mouse data. These columns of random numbers
were generated in two ways: with and without covariance
structure. Our aim was to check the ability of the BGA to
recover the groups structure when random noise is added to
the data set, and to evaluate the capacity of cross-validation
to remove the spurious group effect while keeping the bio-
logical signal identifiable.

Analysis of the House Mouse Data

Figure 3 shows the BGA of the house mouse data set. The R?
permutation test is very highly significant (p-value < 0.0001)
and the percentage of between-group variance is equal to
15%. The cross-validated factor map (Fig. 3B) is very simi-
lar to the original one (Fig. 3A), which suggests that the
groups observed on Fig. 3A are not spurious. The values
of the overlap index for the two figures are very similar
(0.13 and 0.15) and the spuriousness index AOU is thus very
low (3%). This confirms that the distinction between the
five regions is well supported by cross-validation. The null
hypothesis of no difference between the five regions can be
rejected with a very low risk.

The first axis underlines the geographic differentiation
between the two neighboring localities of Montpellier and
Frontignan (South-Eastern France along the Mediterranean
coast) on the left, opposed to the Gardouch locality (South
Western France) and the Corsica populations on the right.
Mice from Lombardy (Northern Italy) have an intermedi-
ate position. The second axis opposes Corsican populations
(upward) to the mice from the Gardouch locality (down-
ward), revealing the effect of insular differentiation.

Given previous results, this structure was to be expected.
Corsican mice display first upper molar with an elongated
anterior part (Renaud et al., 2011). In contrast, among
continental populations, the mice from Montpellier and

d=0.05

House mouse BGA: randtest p-value = 0.0001
Explained variance ratio = 15% Overlap index Oj = 0.13

d=0.05

Cross-validation: Overlap index Ojj = 0.15 - AOjj = 3%

Fig.3 Factor map (first two axes) of the BGA on the house mouse
data set (5 regions, 214 individuals, 128 variables). The percentages
of projected inertia on the two axes are equal to 68% (axis 1, hori-
zontal) and 19% (axis 2, vertical). The scale of the graph is given by
the value d in the upper right corner, it corresponds to the size of the
background grid mesh. The five regions are represented by convex
hulls surrounding all the individuals of each region. A: factor map of

the BGA. The p-value of the R? permutation test is equal to 0.0001,
the percentage of explained variance is equal to 15% and the mean
overlap index bga@,-j is equal to 0.13. B: cross-validated factor map
using the loocv procedure. The mean overlap index xvalO;; is equal to
0.15. The spuriousness index 40;; is equal to 3% and reflects the good
agreement between Fig. 3A and B, confirming the fact that BGA
groups are fully supported by cross-validation
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Frontignan display a particularly short and massive molar
shape (Renaud et al., 2017).

Simulations with Additional Random Variables

Figure 4 displays the results of adding columns of random
numbers with no covariance structure to the house mouse
data table. This figure can be compared for reference to
Fig. 3 (BGA and cross-validation of the house mouse data
table). When columns of random numbers are added gradu-
ally (from A to D), the percentage of explained variance
drops abruptly (from 15% to 4%, 3% and 2%) because of
the strong increase of the total variance due to higher num-
ber of random variables. However, it has no effect on the
significance of the R? permutation test. The p-value stays
constant and equal to 0.0001, even for high number of ran-
dom variables (N;/N, = 214 /2688). Hence, the permutation
test stays extremely significant and is still able to detect the
differences between the five regions despite the columns of
random numbers that were added. The BGA overlap index
drops from 0.13 for the house mouse data to 0.06, 0.03,
0.01 and O respectively. The cross-validation overlap index
increases slowly from 0.15 to 0.17, 0.19 and 0.21. It is also
computed in the full BGA space. As a consequence, the
spuriousness index (AOZ:,-) increases from 3% to 23%, 32%,
36% and 42%.

Figure 4D1 (BGA with 2688 variables) shows that the
five regions are much more separated than they are on Fig. 3.
This comes from the spurious groups effect, and Fig. 4D2
shows that this effect is adequately fixed by the cross-valida-
tion. In fact on Fig. 4D2 the five regions are even too close
together compared to the original data represented on Fig. 3.
Cross-validation seems to slightly over-correct the spurious
groups effect so that the relative positions of groups are less
separated.

Figure 5 shows the values of the mean overlap index of
BGA and of cross-validation in several real and simulated
situations. For tables of purely random numbers (rnorm,
brown curves and circles), the BGA mean overlap index
decreases because of the spurious groups effect and the
cross-validation adequately fixes it. For tables of purely
random numbers but with the same correlation matrix as
the mouse data set (mvrnorm, purple curves and circles), the
mean overlap index also decreases but it stays much higher.
When tables of random numbers are successively added
to the mouse data table, the spurious groups effect slowly
decreases the BGA mean overlap index (green curve and full
circles). Cross-validation (green curve and empty circles)
fixes this and the mean overlap index is even higher than the
one obtained for the mouse data table alone (over-correc-
tion). When tables of random numbers with the same corre-
lation matrix as the mouse data table are successively added
to the mouse data table (orange curves and full circles), the
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BGA mean overlap index does not decrease, even for 512
variables. And the cross-validation mean overlap index
(orange curves and empty circles) increases even more.

The decrease of the BGA overlap index clearly shows
the apparition of the spurious group effect that adds up to
the real regions separation (also seen in Fig. 4). The cross-
validation overlap index increases slightly, and shows the
tendency of cross-validation to overcompensate the spurious
groups effect. The spuriousness index also increases, but it
stays lower than the one obtained for purely random data.
If sets of 128 columns of random numbers with the same
covariance structure as the original house mouse data table
are added, the same patterns are observed but the values
of overlap indexes are higher than for independent random
variables (Fig. 5). This comes from the fact that the random
structures added by random number with no group structure
but with a fixed covariance matrix is higher than the vari-
ations added by random number drawn from a univariate
normal distribution.

Table 5 sums up the values of the spuriousness index
(AO”) in the four situations described in Fig. 5.

Discussion

Our results confirm the conclusions of the series of papers
about spurious groups in between-group PCA, Bookstein
(2019), Cardini et al. (2019) and Cardini and Polly (2020)
and the influence of the number of variables. We also con-
firm the usefulness of cross-validation to support BGA
results and the need to use tests in the data space to check the
significance of the differences between groups. We propose
to use the randtest permutation test of the ade4 package for
this, and the mean overlap index Oij computed by the loocv
function to check out the result of the cross-validation pro-
cedure. The case of unbalanced groups has not been tackled
here, but similar simulation strategies could be used for esti-
mating this potential problem.

BGA is not the only method sensitive to the emergence
of spurious groups on factorial maps when the number of
variables is higher than the number of individuals. We have
checked with the plsDA function of the DiscriMiner pack-
age for R (Sanchez 2013) that spurious groups also appear
in PLS-DA (Partial Least Square Discriminant Analysis,
see for example Barker and Rayens 2003). In the plsDA
function, a cross-validation procedure is available, and it is
applied by default, which prevents misinterpretation when
using PLS-DA.

The spurious groups effect is a geometrical artifact that
can appear in any supervised method, even when the num-
ber of individuals is higher than the number of variables.
The recent paper by Rohlf (2021) explains very clearly
this geometrical effect in high dimension. Cross-validation



Evolutionary Biology (2021) 48:458-471

467

Fig.4 BGA (left) and cross-
validation (right) factor maps
of the house mouse data set
with added columns of random
numbers with no covariance
structure

A1 d=0.05

- ,-4
Corsicalie

A2

Simulation 1: Nv = 768

randtest p-value = 0.0001
Explained variance ratio = 4%
Overlap index Oijj = 0.06

Cross-validation:
Overlap index Oij = 0.17
AQij = 23%

d=0.05

d=0.05
B1

B2

Simulation 2: Nv = 1408

randtest p-value = 0.0001
Explained variance ratio = 3%
Overlap index Ojj = 0.03

Cross-validation:
Overlap index Oij = 0.19
AQij = 32%

d=0.05

d=0.05

C1

C2

Simulation 3: Nv = 2048
randtest p-value = 0.0001
Explained variance ratio = 3%
Overlap index Oijj = 0.01

Cross-validation:
Overlap index Oij = 0.19
AQij = 36%

d=0.05

D1 d=0.05

D2

Simulation 4: Nv = 2688
randtest p-value = 0.0001
Explained variance ratio = 2%
Overlap index Ojj = 0

Cross-validation:
Overlap index Oijj = 0.21
AQijj = 42%

d=0.05
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Fig.5 Mean overlap index of BGA (full circles) and of cross-vali-
dation (empty circles) for several real and simulated situations. The
result for the house mouse data table is indicated by an arrow (BGA
and cross-validation). All other points represent the mean of 100 sim-
ulations for BGA and cross-validation, as in Fig. 2

Table5 Values of the spuriousness index (AO,_-,.) in the situations
described in Fig. 5. All the tables have 214 individuals (rows) and a
number of variables (columns) equal to 128, 256, 384 or 512. The
situations are: rnorm = tables of purely random numbers, mvrnorm
= tables of purely random numbers but with the same correlation
matrix as the mouse data table. Mouse + rnorm = House mouse data
table plus tables of random numbers. Mouse + mvrnorm = House
mouse data table plus tables of random numbers with the same cor-
relation matrix as the mouse data table. The 2% increase observed in
the last three situations for identical numbers of variables is linked to
the cross-validation over-correction

Situation\Variables 128 256 384 512
rnorm 47% 58% 62% 63%
mvrnorm 3% 7% 11% 13%
Mouse + rnorm 3% 9% 13% 15%
Mouse + mvrnorm 3% 11% 15% 16%

and permutation tests can easily detect this artifact in ran-
dom numbers tables, but the problem still remains in real
data tables, where true groups can be mixed with spurious
groups. In this case, the spurious groups effect enlarges the
differences between the real groups and it may be hard to
disentangle these two sources, even with the help of the
cross-validation procedure. This means that a careful selec-
tion of variables and having the highest possible number of
individuals is still indispensable. In special cases like data
sets from 3D methods, this is very difficult and even more
caution should be taken in the interpretation.
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Concerning BGA, we have shown that when the randtest
permutation test is statistically significant, the mean overlap
index could be used to measure the discrepancy between
BGA coordinates and cross-validation results. This is essen-
tial to differentiate true groups from spurious groups, par-
ticularly on real data sets, in situations where the number of
individuals could be low and the between-group differences
weak. We also used the mean overlap index to evidence the
influence of the correlation structure between variables, by
comparing the case of tables of random numbers, with and
without correlation structure, and the case of real data.

The covariance structure between ”geomorphometric”
variables is widespread. It is partly due to the Procrustes
approach itself, which scales, rotates and translates data
according to least squares methods, and therefore gener-
ates correlations among aligned coordinates. The raise of
semi-landmark data, being sampled along curves or surfaces,
further introduces covariation due to neighbouring effects.
Nevertheless, the covariance structure also partly describes
biologically meaningful features, expressing constraints
related to the geometry of the object, its function and devel-
opment, and the underlying standing genetic variation. As
such, the covariance structure itself can be the focus of evo-
lutionary studies (Ackermann and Cheverud 2000; Jamnic-
zky and Hallgrimsson 2009; Renaud et al., 2017a). Because
the main direction of within-group variance corresponds to
frequent variants in a population, between-population evolu-
tion can be channeled along this phenotypic direction, con-
stituting a “line of least resistance to evolution” (Renaud and
Auffray 2013; Schluter 1996).

This covariance structure will differently impact the
PCA (and BGA) and the CVA. The PCA, working on the
total variance, will be influenced by the structure of the
within-group variance. As a consequence, the patterns of
between-group differentiation obtained in the space of PCA
and BGA axes will tend to be very close (Renaud et al.,
2015) and to promote a picture of evolution favored along
the line of least resistance constituted by the direction
of main within-group variance. In contrast, the CVA, by
standardizing within-group variance, will put the focus on
evolutionary divergence occurring in other directions. This
can evidence changes in more discrete, but still phyloge-
netically relevant traits (Renaud et al., 2015), although the
relationships between groups can be distorted. Since both
methods (BGA and CVA) can result in spurious groups, the
choice between the two should depend on the role attributed
to within-group variance in the interpretation. The present
study further demonstrates that such covariance structure in
the “geomorphometric” data will tend to reduce the risk of
spurious groups even with low number of individuals, which
is a reassuring message for the interpretation of biological
data.
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We checked that the randtest permutation test has good
performances in terms of Type I error and power, even in
extreme situations (low number of individuals, high number
of variables, low p-value threshold). We also showed that
the minimum number of individuals needed to compute the
test was low enough to be useful even on small data sets. An
important consequence is that the N,/N, ratio should not be
considered as an immutable constraint. BGA can be used
when the number of individuals is low, even with a high
number of variables, as long as the spurious group effect
is detected and controlled. In the case of non-independent
individuals, particularly in the presence of phylogenetic or
spatial autocorrelation, additional work will be needed to
compare the advantages of the RRPP and MSR procedures.
The R code provided in supplementary material shows that
the RRPP procedure performs better and is much faster, but
MSR is more flexible and can be used in various situations
(e.g., controlling simultaneously for spatial and phyloge-
netic autocorrelations in fourth-corner analysis in Braga
et al., (2018) or for spatial autocorrelations in Mantel test in
Crabot et al. (2019)).

The loocv function can be used for detecting and con-
trolling the spurious group effect: it computes the cross-
validation and provides cross-validated factor maps that
can be compared to the BGA factor maps. It also provides
several statistics to estimate the degree of confidence that
can be granted to the BGA. More particularly, the mean
overlap index can be used as a measure of the discrepancy
between BGA and cross-validation, under the form of the
spuriousness index. The integration of these functions in
the ade4 package allows to expand their use to other types
of data, particularly to qualitative variables (with Multiple
Correspondence Analysis) and to counts tables (with Corre-
spondence Analysis), but also to mixed qualitative/quantita-
tive data sets (Hill & Smith Analysis), and to other methods
including those designed for the analysis of two or three
tables.

Conclusion

The first aim of this paper was to propose to the mor-
phometricians community a set of tools to overcome the
problem of spurious groups in BGA. These tools are inte-
grated in the ade4 package, and their use is summed up in
Fig. 6. The first step in this approach should always be to
use a permutation test of the BGA, even before looking at
graphical outputs. The randtest procedure of aded4 is easy
to compute and very fast, even on large data tables, but it
assumes that the individuals are independent. If this is not
the case, an adapted procedure should be preferred, such as
randomization of residuals. The resulting p-value should
be compared to a sufficiently low threshold, at least 0.01

Compute PCA
dudi.pca()

Y

Compute BGA
bca()

Y

Permutation test | NS | No groups or
randtest() ”| spurious groups

*kek
A

Percentage of
explained variance

High

Low
A

Cross-val_idation
loocv() AQijindex

High_

Spurious groups

Low

Y
Real groups

Y

Fig.6 Summed up scheme of the use of BGA proposed in the ade4
package

for large data sets. If it is higher than this threshold, then
this approach should be stopped and BGA output graphs
should not be considered. In this case, one should con-
clude that this data table does not allow to exclude the
hypothesis of no difference between groups.

If the p-value of the permutation test is lower than the
chosen threshold, then one should look at the percent-
age of between-group variance and, if it is low, start a
cross-validation procedure to make sure that the groups
evidenced by the BGA are real groups. This second step is
needed for two reasons. First, the test may be statistically
significant because of a mix of spurious groups effect and
of real group differences. In this case, distances between
group means are inflated and the dispersion around means
is shrunk, leading to a false impression of large between-
group differences. To ensure an adequate interpretation of
BGA graphs and particularly of group means relative loca-
tions, one should try to evaluate the importance of both
effects. The second reason is that on 1000 tests, even if the
null hypothesis of no difference between the groups is true,
the permutation test (like any other statistical tests) will
give approximately 10 p-values lower than 0.01. In this
situation, the cross-validation step will prevent drawing
erroneous conclusions from the BGA outputs.
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If the percentage of between-group variance is low, and if
the cross-validation map does not support the BGA groups
(spuriousness index higher than e.g. 50%), then the existence
of these groups should be refuted. We hope that these tools
will prove useful to morphometricians and more widely to
all the researchers who use BGA.

Supplementary Information The online version of this article con-
tains supplementary material available https://doi.org/10.1007/
$11692-021-09550-0.
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