
Multivariate analysis of spatial patterns:
a unified approach to local and global structures

JEAN THIOULOUSE1, DANIEL CHESSEL2, and STÉPHANE CHAMPELY1

1 Laboratoire de Biométrie Génétique et Biologie des Populations, URA CNRS 243,
Université Lyon 1, 69622 Villeurbanne Cedex, France.

2 Laboratoire d'Ecologie des Eaux Douces et des Grands Fleuves, URA CNRS 1451,
Université Lyon 1, 69622 Villeurbanne Cedex, France.

Abstract: We propose a new approach to the multivariate analysis of data sets with
known sampling site spatial positions. A between-sites neighbouring relationship
must be derived from site positions and this relationship is introduced into the
multivariate analyses through neighbouring weights (number of neighbours at each
site) and through the matrix of the neighbouring graph. Eigenvector analysis methods
(e.g., principal component analysis, correspondence analysis) can then be used to
detect total, local and global structures. The introduction of the D-centring (centring
with respect to the neighbouring weights) allows us to write a total variance
decomposition into local and global components, and to propose a unified view of
several methods. After a brief review of the matrix approach to this problem, we
present the results obtained on both simulated and real data sets, showing how spatial
structure can be detected and analysed. Freely available computer programs to
perform computations and graphical displays are proposed.

Key words: Correspondence analysis, Geary's index, global structure, local structure,
Moran's index, neighbouring relationship, principal component analysis, spatial
correlation analysis, spatial ordination.
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1. Introduction

The importance of integrating space in the study of structure in species distribution or
environmental variables has been recently underlined by Legendre (1993): "Studying
spatial structures is both a requirement for ecologists who deal with spatially
distributed data, and a challenge". We present here a new method that allows to take
into account spatial structures in multivariate analysis methods by means of a
neighbouring relationship between sampling units.

Many authors have already tried to take into account spatial information in
multivariate analysis. This can be done for example by using the (x, y) coordinates of
the sampling sites in the geographical space. Gittins (1968) introduced this point of
view in Ecology, and it has been also used in other fields (Lee, 1969, 1981).
Wartenberg's Canonical Trend Surface Analysis "is based on the canonical
correlations between sets of orthogonal axes in the space defined by the
characteristics of the organisms and in the space defined by the coordinates of the
localities (and their squares and cross-products)" (Wartenberg, 1985a). Borcard,
Legendre and Drapeau (1992) apply CCA (Canonical Correspondence Analysis, Ter
Braak, 1986) and redundancy analysis (van den Wollenberg, 1977), and compare
several approaches. The use of x, y coordinates and polynomial regression is
satisfying when the sampling domain is roughly homogeneous and the sampling plan
is nearly regular. One drawback is the necessity to use a "trend surface" (i.e., a two-
variables polynomial of some degree), which introduces arbitrary choices. Wartenberg
(1985a) uses only the x and y coordinates and their squares and cross-products, while
Borcard, Legendre and Drapeau employ a two-dimensional third degree polynomial,
from which they select only a few terms using a generalised stepwise regression.
The method proposed here is based on a neighbouring relationship between sites, and
it provides a complete and coherent system for the description of the main structures
of the data table. This description can be performed at two spatial scales, the local one
and the global one (with the same point of view as in Legendre, 1993), the total
variability being decomposed between these two scales.

Moreover, the introduction of neighbouring relationships in the multivariate analysis
of spatial structures has several advantages. Mainly, it allows various conditions of
use (Figure 1).

a) If the sampling zone can be considered as homogeneous (Figure 1A), a simple
neighbouring relationship can be easily deduced from the Delaunay triangulation of
the set of sampling sites (Green and Sibson, 1977; Sibson, 1980, see examples of use
in Upton and Fingleton, 1985 or Pigliucci and Barbujani, 1991). By definition, two
points are neighbours if their corresponding Voronoï polygons have at least one side
in common.

b) In the case of studies in river systems (Figure 1B) neighbouring relationships are
the only possible way since the spatial coordinates (x, y) of sampling sites have nearly
no meaning, while upstream-downstream site positions are directly translatable into a
linear neighbouring relationship (only successive sampling sites along the same
stream are neighbours).
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c) Neighbouring relationships are also a convenient way to take into account obstacles
between sites separated by a small geographical distance (case of a geographical
barrier blocking the passage between two sets of sites, Figure 1C).
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Figure 1. Three examples of use of neighboring relationships in spatial analysis of
ecological data. 1A: neighboring relationship deduced from the Delaunay
triangulation of the sampling space; two point are neighbors if their corresponding
Voronoi polygons have at least one side in common. 1B: simple linear relationship in
a river system; only successive sampling sites along the same stream are neighbors.
1C: neighboring relationship with a geographical barrier blocking the passage
between two sets of sites.

In this paper, we first present the concepts of total variance, local variance, and global
variability. Then, we define the multivariate analyses whose row scores maximise
these quantities. We apply these methods to a simulated data set to test their ability to
detect known a priori spatial structures. We also use them on an ecological data set to
show the results obtained in real situations.
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2. Total and local variances and global variability

2.1 Notations

X = xij[ ]  is the n by p matrix containing the data (p variables measured at n sampling

sites). Xt  is the transpose of X.

x = xi[ ]  is a vector with components xi  (e.g., any column vector from X).

M = mij[ ]  is the symmetric n by n matrix of the between-sites neighbouring graph: if

site i is neighbouring site j then mij = 1, else mij = 0. Moreover for any i, mii = 0.

Matrix P = pij[ ]  is simply deduced from M by pij =
1

2m
mij , where m is the total

number of pairs of neighbours, therefore pij
ij
∑ =1 .

D = Diag(p1, p2,..., pn ) is the diagonal matrix of neighbouring weights:

pi =
1

2m
mij

j
∑ .

2.2 Definition of the total variance, local variance and global
variability

The mean of variable x given the weights D is equal to:

xD = pi
i

∑ xi = xtD1n . (1)

Its variance is equal to what we call the total variance:

Var(x) = pi xi − xD( )
i

∑ 2
. (2)

If x is D-centred (i.e., if the mean of x given the weights D is equal to zero), it can be
written in matrix form as:

Var(x) = x tDx . (3)

The local variance (Lebart, 1969; Banet and Lebart, 1984) is:
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LV(x) = pij
j

∑
i

∑ xi − x j( )2
(4)

and can be written as:

LV(x) = x t (D − P)x = x tD(In − D−1P)x. (5)

The global variability (or spatial auto-covariance) is defined by:

GV(x) = pij
j

∑
i

∑ xi − xD( ) x j − xD( ) , (6)

which, if x is D-centred, can be written:

GV(x) = x tPx = x tD(D−1P)x . (7)

Since it is not always positive, it cannot be called global variance. The second form in
equations (5) and (7) shows that the global variability can be seen as the covariance
between x  (the observed values) and the mean of its neighbours (7), and that the local
variance can be seen as the covariance between x  and the difference between each
point and the mean of its neighbours (5). From equations (3), (5) and (7), we can
derive a variance decomposition of the form:

Var(x) = LV(x) + GV(x) (8)

hence a decomposition of the total variability into local and global components with
respect to the neighbouring relationship between observations. With a different goal,
Faraj (1993) also uses neighbouring weights.

2.3 Relationships with usual indices:

When the neighbouring weights (D) are uniform, (∀i,  pi =
1

n
; this is the case for

example in circular linear neighbouring relationships), the ratio of the local variance
to the total variance LV(x) Var(x) is equal (except a (n −1) n  factor) to Geary's
coefficient of autocorrelation, from which Geary's index can be deduced (Geary,
1954; Cliff and Ord, 1973).

Similarly, we can note that Moran's index, I (Moran, 1948; Cliff and Ord, 1973;
Ripley, 1981) is exactly, under the same hypothesis, the ratio of the global variance to
the total variance GV(x) Var(x) .
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3. Total, local and global multivariate analyses

3.1 Analysis of a statistical triplet

The total, local and global multivariate analyses that maximise the corresponding
variances will be presented in the general form of the analysis of a statistical triplet. A
triplet (X, C, R) consists of three matrices: the data matrix X (possibly after an
appropriate transformation, like centring or standardisation), the matrix of row
weights (R), and the matrix of the metric used to measure the distances between rows
(C). Reciprocally, C can also be seen as the matrix of column weights, and R as the
matrix of the metric used to measure the distances between columns. The analysis of

this statistical triplet is based on the eigenvector analysis of matrix Xt RXC. When C
is not proportional to the identity, this matrix is not symmetric, but the eigenequation
can be written as:

C1/2Xt RXC1/2uα = λ αuα (9)

with eigenvectors uα  and uβ  verifying uα
t uβ = δαβ . The principal axes and the row

scores are respectively aα = C−1/2uα  and cα =
1

λ α
XC1/2uα .

See Caillez and Pagès (1976), Escoufier (1987), and Dolédec and Chessel (1994) for a
general presentation of this point of view.

3.2 Principal component analysis

The usual PCA is the analysis of the triplet (Xc , I p , 
1

n
I n ) where I p  is the (p x p)

identity matrix, I n  is the (n x n) identity matrix and Xc  is the (n x p) centred (PCA
on covariance matrix) or standardised (PCA on correlation matrix) data matrix. The
row scores of this analysis maximise the usual variance.

The analysis of the total structure is the analysis of the triplet (XD , I p , D) where XD

is the D-centred (or D-standardised) data matrix. The row scores of this analysis
maximise the total variance.

Following Le Foll's approach (Le Foll, 1982), the analysis of the local structure of the
data matrix can be accomplished by the analysis of the triplet (XD , I p , D − P ). The
row scores of this analysis maximise the local variance.

Wartenberg (1985b) has presented a method called Multivariate Spatial Correlation

Analysis (MSCA), based on the eigenvector analysis of matrix Xt MX (the spatial

covariance matrix). By introducing the D-centring and using P = 1 2m( )M , we simply
obtain the analysis of the global structure of the data table by the PCA of the triplet
(XD , I p , P). The row scores of this analysis have the highest possible global
variability. The corresponding eigenvalues are not always positive, as they are not
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variances but spatial auto-covariances (6). This does not raise any problem in the
interpretation of the analysis: a negative value just means that a high positive value at
one point is likely to be surrounded by high negative values at neighbouring points
(i.e.,  there is a negative spatial auto-covariance).

Thanks to the D-centring, the operators of these three analyses are linked, thus
providing a canonical decomposition of the total variance:

XD
t DXD = XD

t (D − P)XD + XD
t PXD . (10)

Compared to the method proposed by Solow (1994) for extracting a common trend
from a time series, our global analysis extends the concept of time trend to space trend
(in fact, to any neighbouring relationship), and provides the numerical stability
needed when there are many variables.

3.3 Correspondence analysis

The above PCAs can be extended to Correspondence Analysis (CA). The only
problem is the fact that the row weights must in this case be taken as the neighbouring
weights instead of the usual CA weights, leading thus to a modified CA.

Let us first define the usual CA as the analysis of a triplet (Escoufier, 1982).
 
Let x..

be the total sum of data matrix X (containing species counts in this case):

x.. = xij
j

∑
i

∑ (11)

and let F = fij[ ]  be the frequency matrix:

fij =
xij

x..
(12)

fij
j

∑
i

∑ = 1. (13)

Fn = Diag fi.[ ]  and Fp = Diag f.j[ ]  are the diagonal matrices containing the row and

column frequencies:

fi. = fij
j

∑ (14)

f. j = fij
i

∑ . (15)
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With these notations, the usual CA is the analysis of the triplet (Fn
−1FFp

−1 − 1np , Fp ,

Fn ). 1np  is the (n x p) matrix with all elements equal to one. The general term aij  of

matrix A = Fn
−1FFp

−1 − 1np  is:

aij =
fij

fi. f. j
−1 (16)

We can now define the total, local and global CA as being triplet analyses.

Fw = Diag w. j[ ]  is the diagonal matrix containing the column weights deduced from

the neighbouring relationship:

w.j = pi

fij
fi.i

∑ (17)

The total CA is the analysis of the triplet ( Fn
−1FFw

−1 − 1np , Fw , D). The local CA is the

analysis of the triplet (Fn
−1FFw

−1 − 1np , Fw , D − P ), and the global CA is the analysis

of the triplet (Fn
−1FFw

−1 − 1np , Fw , P). These CA are linked in the same way as (10).

They provide Fw -standardised species codes which, by averaging, give in turn sample
codes that maximise the total variance, the local variance, or the global variability.

4. Results on simulated data

A single set of simulated data was used to test the ability of these methods to detect
total, local and global structures. This set was made of one table with seven columns,
denoted x1 to x7, and 49 rows corresponding to 49 sampling sites located at the nodes
of a 7x7 square grid. The values of variables x1 to x5 are sampled from a normal
distribution N (0, 1) with a fixed correlation structure (table 1). These variables
introduce structures without spatial component in the data set.

Table 1. Correlation matrix of the first five variables included in the simulated data
set.

X1 X2 X3 X4 X5
X1 +1.00 +0.49 -0.12 +0.01 +0.23
X2 -0.49 +1.00 +0.32 +0.25 -0.15
X3 -0.12 +0.32 +1.00 +0.31 -0.07
X4 +0.01 +0.25 +0.31 +1.00 +0.08
X5 +0.23 -0.15 -0.07 +0.08 +1.00

Variable x6 has a fixed spatial repartition on the grid, with a maximum equal to 4 at
the centre of the grid and values decreasing to 1 towards the edges. A random noise
was added to this structure at each node of the grid by means of values sampled from
N (0, 1). This variable presents a strong global structure. Variable x7 was built starting
from 49 alternating values equal to -1 or +1, to which a normal N (0, 1) noise was also
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added. This variable thus presents a strong local structure. Figure 2 shows the spatial
distribution of the seven variables.

x1 x2 x3

x4

x6

x5

x7

Figure 2. Graphical display of the simulated data set (x1, ..., x7) used to test the
ability of the three methods to detect local and global structures. The diameter of
circles and the side of squares are proportional to the values represented (circles for
positive values and squares for negative ones). Variables (x1, ..., x5) are sampled from
a normal distribution N (0, 1) with a fixed correlation structure (table 1). Variables x6
and x7 are built to exhibit strong global and local structures respectively (see text).

The neighbouring relationship chosen to perform the total, local and global analyses
was the simple chess rook relationship with lag one. Figure 3 shows the spatial
distribution of the row scores on the first axis of each analysis. It is very clear that the
global structure created by variable 6 is revealed only by the first factor of global
analysis, and not by total and local analyses. Conversely, the local structure of
variable 7 is detected by the local analysis, and not by total and global analyses.

Variable 6 has the highest global variability (0.17) and the smallest local variance
(0.82) of all the variables, while variable 7 has the smallest global variability (-0.68)
and the highest local variance (1.68). Comparatively, the first factor score of the
global analysis has a global variability equal to 0.56 (the first eigenvalue of global
analysis) and a local variance equal to 0.80. The first factor score of the local analysis
has a local variance equal to 2.11 (the first eigenvalue of local analysis) and a global
variability equal to -0.61.
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Total

Local

Global

Figure 3. Row scores of the simulated data set on the first axis of total, local and
global analyses. The diameter of circles and the side of squares are proportional to the
values represented (circles for positive values and squares for negative ones). Local
analysis detects the local structure and global analysis detects the global structure.
Total analysis only reflects the non-spatial correlation structure introduced by x1, ...,
x5.

5. Results on the ecological example

The data table has 90 rows and 64 columns and contains the abundance of 64 bird
species in 90 samples (Bournaud, 1987). This table is available at the following URL
(Uniform Resource Locator): ftp://biom3.univ-lyon1.fr/pub/datasets/EES95/tab.txt.
The samples come from a zone surrounding the Rhône river near Lyon, France; they
are roughly regularly spaced. The spatial position of the 90 samples on a geographical
map is given in Figure 4A.

This map was digitised and the XYZ GeoBench package for Macintosh micro-
computers (Schorn, 1991; URL ftp://neptune.ethz.ch/pub/xyz/) was used to obtain the
Voronoï diagram and the corresponding Delaunay triangulation. The neighbouring
relationship between samples was directly deduced from this triangulation (Figure
4B). The distribution of the 64 bird species is shown in Figure 5, where different
types of distributions are clearly present (e.g., species 19 and 28).
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Figure 4. Geographical map of the study site (A) and the neighboring relationship
deduced from the Delaunay triangulation of the set of samples (B).

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 5. Collection of the 64 maps of bird species abundance in the 90 samples.
Circle size is proportional to the abundance of each species. A dot denotes the absence
of the species.
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Figure 6. Map of the first factor score of total (A), global (B) and local (C) analyses.
Circle and square sizes are proportional to the factor scores. Circles indicate positive
values and squares negative ones. Graphs A', B' and C' show the smoothing error
(sum of the squared differences between observed and estimated values) plotted
against the number of neigbors used to compute the contour curves. This is a
simplified version of the "M plot" technique (Cleveland and Devlin, 1988) to choose
the number of neigbors in a locally weighted regression. Graphs A'', B'' and C''
represent the eigenvalues of each analysis.
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Figure 6 shows a representation of the first factor of the total (6A), global (6B) and
local (6C) correspondence analysis on the geographical map. The circle and square
sizes are proportional to sample factor scores. The contour curves are computed by a
bi-dimensional lowess regression (Cleveland, 1979) over the nine nearest neighbours.
Nine neighbours were chosen after looking at the variations of the smoothing error
(sum of the squared differences between observed and estimated values) as a function
of the number of neighbours (Figures 6A', 6B', and 6C'). See Cleveland and Devlin
(1988) for a detailed explanation of this procedure. The error clearly drops for six
neighbours in total and local analyses, while the minimum is only obtained for nine
neighbours in the case of the global analysis. The bar charts of eigenvalues are given
in Figures 6A'', 6B'', and 6C''.

The contour curves in Figure 6B show that the first factor of the global analysis is
smooth, with a south-west to north-east gradient. This is consistent with the
constraints put on these scores, and with the fact that nine neighbours (instead of six)
where needed to achieve a satisfying smoothing. Moreover, the smoothing error is
always smaller for the global analysis than for the total and local ones (Figures 6A',
6B', and 6C'). For example, with 5 neighbours, the smoothing error is equal to 0.72
for the global analysis, 1.3 for the total analysis and 1.7 for the local analysis. The
observed gradient corresponds to an open/closed vegetation gradient in the sampling
zone that clearly affects bird distribution.

The contour curves in Figure 6C are much less smooth than in Figure 6B. The squares
and circles representation underlines the opposition between a few points showing
large squares surrounded by circles. These local structures also correspond to
vegetation structures (clearing and surrounding skirts) affecting bird distribution. This
feature is also consistent with the fact that these scores maximise the local variance
(see paragraph 3.3).

Interestingly enough, the total CA (which is just an ordinary CA with special row
weights) is an intermediate between the local and global analyses (Figure 6A). The
features of both constrained analyses can be found in the map of factor scores (6A),
but they are obviously less clear. The open/closed gradient is hardly visible, and the
opposition between circles and squares is lessened. The smoothing error decrease
(6A') and the eigenvalue (6A'') charts are more like the local analysis diagrams than
like the global ones. In the unconstrained analysis, the global structures are hidden by
the local ones because they are forced into the same scale.

This example underlines the importance of graphical representations in the study of
spatial structures in ecology. We quite agree with Birks and Myers in their discussion
of the paper by Borcard and Legendre (Borcard and Legendre, 1994) on the fact that
contouring and interpolation techniques should be combined with ordination methods
to provide effective displays of ecological patterns. In the present work, local
regression, carefully applied with the help of the smoothing error chart, shows up as a
simple and efficient method for computing contour curves of factor scores.
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6. Discussion

In the comparison of the three types of analyses (total, global and local) on several
ecological data sets, at least two simple situations can be distinguished, namely:

1) Total structures = global structures = local structures. This is the case if all
structures are pure gradients, and the resulting interpretations are then made in terms
of ordinations.

2) Total structures = global structures ≠ local structures. This means that the structures
correspond to partitions.

Moreover, as it is the case in this paper, both kinds of structures may be present
simultaneously and interact (the local structures being nested in the global one).

The methods described here take into account the neighbouring relationship through
the weighting of the units (with the neighbouring weights), and through the graph
matrix for global and local analyses. The weighting (and the corresponding D-
centring), on the one hand grants a higher importance to points having a lot of
neighbours (thus lessening the importance of edge points), and on the other hand
allows a unification of several points of view, mainly the introduction of Geary's and
Moran's indices into multivariate analysis, and the propositions made by Lebart, 1969;
Le Foll, 1982; Wartenberg, 1985b.

Neighbouring relationships also provides an alternative to the use of orthogonal
polynomials to model the spatial components of the data set. As pointed out by
Borcard and Legendre (1994, p.59), "The terms of the spatial polynomials originally
proposed by Legendre (1990) are not independent of one another. If the interpretation
of the regression or canonical coefficients relating these terms to the community
structure is of special interest, orthogonal polynomials should be used instead of the

classical polynomials". The eigenvectors of the so-called smoothing operators D−1P
and I n − D−1P  (that arise in equations 5 and 7) are the same, and they define a
D -orthonormal basis on which the data can be projected to obtain a decomposition of
the global phenomenon.
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Figure 7.  Graphical display of the first six eigenvectors of the smoothing operators.
Circles and squares (A) are best to show partitions of the area, while contour curves
(C) underline the smoothness of the phenomenon. Grey level polygons (B) seem less
effective. The graph of the smoothing error (D) can be used to determine the number
of neighbors neeeded to compute contour curves; here 5 neighbors are enough.

Figure 7 shows three representations of the first six eigenvectors of the smoothing
operator associated to the neighbouring relationship in our example. Figure 7A is
drawn with circles and squares, Figure 7B with grey level polygons, and Figure 7C
with contour curves. Grey level polygons are probably the worst type of
representation. Contour curves underline the smoothness of the eigenvectors, while
circles and squares stress the cutting out of spatial patterns. The graph of the
variations of the smoothing error for contour curves (Figure 7D) shows that this error
increases with the rank of the eigenvector (curve 1 to 6), and with the number of
neighbours when it is greater than 5 or 6.

The problem of modelling the non spatially structured fractions (Borcard and
Legendre, 1994 p. 60) can also be tackled by using the last (instead of the first)
eigenvectors of the smoothing operators. Indeed, these eigenvectors are "anti-smooth"
and thus provide a good way to model local structures.

The use of neighbouring relationships is very general and can be extended to other
types of analyses. This has been demonstrated here for Correspondence Analysis, but
it is also applicable to Multiple Correspondence Analysis (in the case of qualitative
variables) for example. It is also particularly interesting in methods for relating two
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data tables to one another, and we are preparing a follow-up to this paper dealing with
the introduction of neighbouring relationships in co-inertia analysis (Chessel and
Mercier, 1993; Dolédec and Chessel, 1994), and in the family of instrumental variable
analyses, like CCA (Ter Braak, 1986) and the PLS (partial least square) or WA-PLS
(weighted averaging partial least square) regressions (Ter Braak et al., 1993).

The computer programs used to perform the computations and graphical displays
shown here are part of the ADE package (Chessel and Dolédec, 1993; Thioulouse et
al., 1995). This package, for Apple Macintosh micro-computers, is freely available on
the Internet at the following URL:

ftp://biom3.univ-lyon1.fr/pub/mac/ADE/ADE4/
or through this WWW (World Wide Web) page:

http://biomserv.univ-lyon1.fr/ADE-4.html.
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